Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise

نویسندگان

چکیده

Abstract In this paper, we prove the existence of strong solutions to an stochastic differential equation with a generalized drift driven by multidimensional fractional Brownian motion for small Hurst parameters $$H<\frac{1}{2}.$$ H < 1 2 . Here, is given as local time unknown solution process, which can be considered extension concept skew case motion. Our approach construction new and relies on techniques from Malliavin calculus combined “local variational calculus” argument.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional Stochastic Navier-stokes Equations with Fractional Brownian Noise

We study the perturbation of the two-dimensional stochastic Navier-Stokes equation by a Hilbert-space-valued fractional Brownian noise. Each Hilbert component is a scalar fractional Brownian noise in time, with a common Hurst parameter H and a specific intensity. Because the noise is additive, simple Wiener-type integrals are suffi cient for properly defining the problem. It is resolved by sepa...

متن کامل

Existence of strong solutions and uniqueness in law for stochastic differential equations driven by fractional Brownian motion

In this paper we establish the existence of path-wise solutions and the uniqueness in law for multidimensional stochastic differential equations driven by a multi-dimensional fractional Brownian motion with Hurst parameter H > 12 .

متن کامل

A Note on Strong Solutions of Stochastic Differential Equations with a Discontinuous Drift Coefficient

The existence of a mean-square continuous strong solution is established for vectorvalued Itô stochastic differential equations with a discontinuous drift coefficient, which is an increasing function, and with a Lipschitz continuous diffusion coefficient. A scalar stochastic differential equation with the Heaviside function as its drift coefficient is considered as an example. Upper and lower s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2021

ISSN: ['1572-9230', '0894-9840']

DOI: https://doi.org/10.1007/s10959-021-01084-7